A proof of the compactness theorem for arithmetical classes
نویسندگان
چکیده
منابع مشابه
A new proof of the compactness theorem for propositional logic
The compactness theorem for propositional logic states that a demumerable set of propositional formulas is satisfiable if every finite subset is satisfiable. Though there are many different proofs, the underlying combinatorial basis of most of them seems to be Kόnig's lemma on infinite trees (see Smullyan [2], Thomson [3]). We base our proof on a different combinatorial lemma due to R. Rado [1]...
متن کاملA new proof for the Banach-Zarecki theorem: A light on integrability and continuity
To demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the Banach-Zareckitheorem is presented on the basis of the Radon-Nikodym theoremwhich emphasizes on measure-type properties of the Lebesgueintegral. The Banach-Zarecki theorem says that a real-valuedfunction $F$ is absolutely continuous on a finite closed intervalif and only if it is continuo...
متن کاملfocus on communication in iranian high school language classes: a study of the role of teaching materials in changing the focus onto communication in language classes
چکیده ارتباط در کلاس به عوامل زیادی از جمله معلمان، دانش آموزان، برنامه های درسی و از همه مهم تر، مواد آموزشی وابسته است. در تدریس ارتباطی زبان که تاکید زیادی بر توانش ارتباطی دارد، کتاب درسی به عنوان عامل موثر بر پویایی کلاس محسوب میگردد که درس ها را از طریق فراهم آوردن متن ارتباط کلاسی و هم چنین نوع تمرین زبانی که دانش آموزان در طول فعالیت های کلاسی به آن مشغول اند، کنترل می کند. این حقیقت ک...
15 صفحه اولA Compactness Theorem for the Yamabe Problem
In this paper, we prove compactness for the full set of solutions to the Yamabe Problem if n ≤ 24. After proving sharp pointwise estimates at a blowup point, we prove the Weyl Vanishing Theorem in those dimensions, and reduce the compactness question to showing positivity of a quadratic form. We also show that this quadratic form has negative eigenvalues if n ≥ 25.
متن کاملA Simplified Proof of Arithmetical Completeness Theorem for Provability Logic GLP
We present a simplified proof of Japaridze’s arithmetical completeness theorem for the well-known polymodal provability logic GLP. The simplification is achieved by employing a fragment J of GLP that enjoys a more convenient Kripke-style semantics than the logic considered in the papers by Ignatiev and Boolos. In particular, this allows us to simplify the arithmetical fixed point construction a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fundamenta Mathematicae
سال: 1952
ISSN: 0016-2736,1730-6329
DOI: 10.4064/fm-39-1-8-14